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ABSTRACT

In previous work we have defined our trend template
epistemology for clinically significant trends and we
have illustrated and tested a program TrenDx that mon-
itors time-ordered process data by matching the data to
trend templates. Our initial application domain was
pediatric growth monitoring. In continuing work we
have explored monitoring hemodynamic and respira-
tory parameters of intensive care unit patients. This
application has highlighted the needs for advances in
our representation and monitoring algorithms. In par-
ticular, we have added reasoning with uncertainty to
the trend template epistemology, and a new control
structure allowing numerical ranking of competing
trend templates. Furthermore, intelligent monitoring in
any medical domain requires a coherent framework for
diagnostic monitoring. In this paper we show how
TrenDx can be extended to a framework including
sending alarms, changing clinical context, and filtering

data streams. !
INTRODUCTION

Trend Templates and TrenDx

In previous work [1, 2] we have defined our trend
template epistemology for clinically significant trends,
consisting of landmark points representing events in a
process and intervals representing phases of that pro-
cess. Below is part of a trend template for normal pedi-
atric growth in boys. This partial template includes two
landmark points, representing birth and the onset of
puberty, which is at temporal distance 10 to 13 years
from birth. The two intervals, representing periods of a
child establishing height and weight centiles and of
pre-pubertal growth, also have temporal uncertainty as
indicated.

Notice also that the two intervals are represented as
consecutive phases, so that the endpoint of the first
interval is infinitesimally before the begin point of the
second interval. Also attached to each interval are
value constraints that restrict the value of relevant
parameters that occur in data during the intervals. In
particular, these value constraints place limits on the Z-
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scores (number of standard deviations from the popu-
lation mean) of the normal growth patient’s heights
and weights.
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Figure 1 Partial trend template for normal pediatric
growth.

We have illustrated and tested a program TrenDx
that monitors time-ordered process data by matching
the data to trend templates. The program branches to
consider alternate temporal chronologies of how the
process data has evolved.

Previous Work in Pediatric Growth Monitoring

General pediatricians that monitor their patients’
growth suffer from data overload in that they have
insufficient time per patient to investigate the entire
time-series of growth data (heights, weights, and bone
ages). Our goal in that domain was to develop a
screening tool for general pediatricians that could
examine growth chart data and suggest a possible dis-
order.

As described in [2] we conducted a preliminary
clinical trial using 30 consecutive growth records
from the endocrinology clinic at Boston Children’s
Hospital. The results were encouraging in that TrenDx
showed promise in reaching the same diagnosis as a
panel of experts, at a time no later than the experts, in
most of the cases. The trial was also useful in uncov-
ering some representational issues that needed further
research. We are currently planning a larger scale trial
using hundreds of clinical cases where will we com-
pare TrenDx monitoring performance to humans of
various expertise: medical students, general pediatri-
cians, and pediatric endocrinologists.

Intensive Care Unit Monitoring

We have attempted to apply our approach to the
domain of intensive care unit (ICU) monitoring. Here
there is also data overload; eight or more patients are
in an ICU, and each patient is monitored with dozens
of hemodynamic and respiratory variables sampled



several times per minute. It is impossible for nurses to
steadily monitor even minutes worth of continuous data
from an individual patient. Our goal in ICU monitoring
is developing context-sensitive monitors whose use
will significantly reduce the high false positive rates
typically produced with single-variable threshold moni-
tors. TrenDx can potentially monitor the adequacy or
failure of external interventions on ICU patients, and
the normality or abnormality of physiological mecha-
nisms in these patients. Interventions and mechanisms
may display a characteristic multivariate pattern over
several phases. An automated monitor must apply spe-
cific filters and value constraints appropriate for each
phase of the intervention or mechanism.

In Figure 2 are one hour of ICU data from an 8
month old girl with adult respiratory distress syndrome
[3]. Four signals are plotted from 12:00 a.m. to 1:00
am.: heart rate taken from the electrocardiogram
(ECG), mean arterial blood pressure, oxygen satura-
tion, and fraction of inspired oxygen (FIO,). Data were
compressed by reporting values only upon changes.
Usually, the patient received oxygen via the ventilator,
FIO, at 50%. Approximately once every two hours, the
patient was ventilated by the nurse squeezing a hand
bag filled with 100% oxygen, so that a bronchodilator
could be delivered in aerosol form. One handbagging
session was from 12:22 a.m. until 12:31 a.m. As illus-
trated in the figure, the change to hand-bagging was
marked by an immediate rise of FIO, from 50% to
100%, remaining at 100% during hand bagging. Within
a minute after hand-bagging began, O, saturation rose
sharply to 100%. These two changes are expected in
such a handbagging session. During such hand-bagging
it is preferable that the patient’s hemodynamics remain
stable. However, in this patient mean arterial blood
pressure dropped from about 12:26 a.m. to 12:31 a.m,
and ECG-measured heart rate rose steadily from
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approximately 12:27 until 12:30 a.m. These two
changes are not usually expected. This pattern in these
four parameters occurred during each of the six hand-
bagging sessions for this patient over a twelve-hour
period.

One possible explanation for this hemodynamic fault
is that the oxygen handbagging increased pressure in
the chest cavity. This could have depressed the
patient’s vena cava and compromised her venous
return to the heart, resulting in the falling blood pres-
sure. The heart rate increase may have been a normal
baroreceptor reflex to the falling heart rate. Whatever
the explanation, this hemodynamic fault is worthy of a
clinician’s attention.

Framework for Intelligent Diagnostic Monitoring

In order to achieve robust monitoring performance
in multiple domains, we have extended our trend
detection algorithm TrenDx to a broader framework
for intelligent diagnostic monitoring. This framework
includes a means of representing significant multivari-
ate trends with multiple phases, and methods of detect-
ing those trends from data. Also included are means for
generating reliable alarms, displaying and explaining
significant trends, and changing the clinical context.
More complete details of the framework are in the
author’s dissertation [4].

REPRESENTING SIGNIFICANT TRENDS

Regression-Based Trend Templates

To advance our original work we needed a trend rep-
resentation with robust matching, and allowing ranking
of competing trend hypotheses. We modified trend
template value constraints to be parameterized statisti-
cal models describing variation in data assigned to an
interval. More precisely, let hyp be a TrenDx hypothe-
sis consisting of a trend template TT; hyp assigns data
to the intervals of TT. Let I be an interval of TT and let
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Figure 2: One hour of four signals plotted from an intensive care unit patient.
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D(I, hyp) be the data assigned to I in hyp. Each value
constraint consists of two main components:

1.a function F that maps the data D(I, hyp) to a
time-indexed real-valued sequence {Y,}.

2.a linear regression model describing the pattern
of {Y,}.

The primary set of linear regression models used in
this research are polynomials of degree 0, 1, and 2,
with qualitative or quantitative constraints on some
subset (perhaps empty) of the polynomial coefficients.
A qualitative constraint is a member of the set {+, -},
representing that the parameter is positive or nega-
tive2 A quantitative constraint is either a single
numerical value or a numerical range [min max] of
values. There are seven qualitatively distinct elemen-
tary regression models used in value constraints.
These seven models are sufficient to roughly distin-
guish between different types of behaviors.

Constant models with quantitative parameter con-
straints can be used to represent steady states. An
interval of normal human temperature may constrain
temperature to be constant at 37 degrees Celsius. A
constant model without a numerical estimate repre-
sents quiescence at an unknown level.

Linear models with quantitative slope constraints
can help distinguish clinically distinct trends. For
example, blood pressure loss due to handbagging may
have a slope in the range -1 mm Hg to -3 mm Hg per
minute, whereas blood pressure loss due to internal
hemorrhaging may have a slope in the range -10 mm
Hg to -20 mm Hg per minute. Linear models with

2. In this research a parameter estimate of 0 is considered a
quantitative estimate.
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Quadratic models with qualitative constraints are
useful for representing trends having a sharp increase
or decrease followed by a stabilization. They can bet-
ter fit data showing a nonlinear response than can a
linear model. When qualitative or quantitative con-
straints on quadratic coefficients are not derivable, a
knowledge engineer may better characterize a qua-
dratic trend with qualitative constraints on the first and
second derivatives.

Monitor Sets

A monitor set is a set of trend templates forming a
clinical context. The trend templates within a monitor
set are viewed as a partition of trends that may occur
in a particular clinical context. The members of a
monitor set are concurrently matched against the same
patient data by TrenDx.

In a diagnostic setting one trend template within a
monitor set is the expected or normal model, the other
trend templates are fault models. The fault models are
those that if matched well warrant attention by the per-
son or system observing the device.

Monitor Set for Oxygen Handbagging

In Figure 3 are two trend templates comprising a
monitor set of patient response to 100% oxygen hand-
bagging. One trend is expected and the other suggests
a fault.

The hemodynamic fault trend template consists of
eight intervals. The changes in four parameters are
each represented in a pair of intervals. Temporal rela-
tions between these intervals establish a pattern that is
fairly specific to this particular population response.
The top two intervals denote that, during handbagging,
the fraction of inspired oxygen (FIO,) remains con-
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Figure 3: Competing trend templates for oxygen handbagging.



stant at 100 percent, and that for three minutes after
handbagging, FIO, is constant at some unspecified
value. Given the time of Handbag On for a particu-
lar patient, the trend detection program TrenDx can
use these two intervals to estimate that patient’s time
of Handbag Off. TrenDx estimates based on when
FIO, has changed from 100 percent. The next two
intervals describe the rise and stabilization of oxygen
saturation of hemoglobin. During saturating
Hb, O, saturation is linear and increasing; during
saturated Hb, O, saturation is constant at 100
percent. The two other pairs of intervals constrain the
responses of blood pressure and heart rate. Each
parameter first has a steady phase, beginning at the
same time as Handbag On. During these phases,
both parameters are constant. A second phase of
decreasing BP, beginning 3 to 10 minutes after Hand -
bag On, constrains BP to be linear and decreasing.
This phase ends at Handbag Off. A second phase
of increasing HR, beginning 0 to 5 minutes after the
begin point of decreasing BP constrains HR to be
linear and increasing. The temporal relations between
these intervals insure that as TrenDx matches process
data early in the template, the program constrains the
expected match to data in the future.

The trend template for adequate handbagging con-
tains the same landmark points and the same response
intervals for FIO, and O, Sat. The adequate handbag-
ging trend template differs in its trends for BP and HR,
both of which are constrained to be constant in a sin-
gle interval whose length is the handbagging period.

MATCHING DATA TO TREND TEMPLATES

The trend diagnosis program TrenDx matches
patient data to the regression-based trend templates in
each monitor set. TrenDx instantiates the trend tem-
plates for a particular patient by anchoring a landmark
point of a trend template to an event in the patient his-
tory. In this ICU example, the landmark point hand-
bag on is anchored to the time of a special datum
generated by a switch on the ventilator noting that
the ventilator no longer supplies oxygen. In principle
instantiation could also proceed via the results of a
strong match to a preliminary trend template.

The goodness of fit of value constraint vc for the
hypothesis hyp, denoted by Fit(vc, hyp), is the mean
absolute percentage error (MAPE) between sequence

values {Y,} and regression model estimations { Y }:

¥,-v,
Y

Fit(vc, hyp) = !

Y, ]
N~ €D
where N is the number of values within the interval,
and p is the number of parameters that are estimated.
MARPE is particularly useful for comparing the good-

705

ness of fit between models of different variables of
possibly different measurement scales.

The goodness of fit of a hypothesis to the data
assigned to the intervals of its trend template is a
weighted average of the fits to the individual value
constraints. The weights may be defined by experts;
by default the weights are the (N-p) used as the
denominators of value constraint scores. For each
trend template, which has temporal uncertainty,
TrenDx optimizes over all temporal distances to find
the best matching hypothesis to the data.

TrenDx matched the trend templates in Figure 3 to
four signals of data between 12:22 and 12:31 a.m.
during which the patient received oxygen via a hand-
bag. Several intensive care unit physicians agreed the
patient was experiencing some hemodynamic fault
during this period. TrenDx also matched the same
monitor set to five other periods of handbagging in
this patient during the same day. The results were sim-
ilar enough that we only show results of matching to
the first handbagging session.

Figure 4 shows the four signals of ICU data and
results of TrenDx matching to this data. Note that the
outlying heart rate between 12:24 am. and 12:25 a.m.
caused a jump in the match scores to both trend tem-
plates. Had that outlier been removed or smoothed by
filtering, the error scores for both trends would have
remained lower.

The best matches of each trend template stay close
in score until 12:27:21 a.m., when the percentage
error for the adequate handbagging trend template
rises while that for the compromised venous return
stays level. The difference between these two, plotted
at the bottom of the graph, rises steadily for the dura-
tion of the handbagging episode. This difference, if
judged significant, may be used as a means for send-
ing an alarm.

JUDGING TREND SIGNIFICANCE

Generally, TrenDx matches to a monitor set by
computing for each time slice of data the best match-
ing score for the normal trend template and for each
competing fault. Throughout this section we denote
the sequence of best scores for the normal template
{TT,} and the sequence for each fault template
{TTg}. High values in these sequences indicate a poor
match to data. We denote by {TT, - TTg} the
sequence of score differences some fault model and
the normal model. High values in this sequence indi-
cate that the fault model matches better than the nor-
mal model.

We now must devise a scheme for answering the
following questions:
* When has the normal model become a signifi-
cantly poor match to the data to require attention?
The answer is a property of the sequence {TT,}.
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Figure 4: TrenDx results of monitoring ICU data during handbagging.

* When is a fault model a significantly better match
to the data than the normal model?

The answer is a property of the sequence {TT, -

TTg}.

There are many possible means to answer these
questions. In fact, trying to answer them uncovers
another monitoring problem. Notice that each of the
TrenDx result plots in Figure 4 is in fact a time-
ordered sequence of data, and we wish to detect par-
ticular types of trends in these sequences. Does this
mean we are back to square one of diagnostic moni-
toring? Not really, for we have significantly reduced
the complexity of our monitoring task in two respects,
First, we no longer must represent the relevant diag-
nostic categories, which requires extensive domain
knowledge. Instead, we must represent the relevant
monitoring strategies, which depend less on the
progress of disorders but more on the monitoring
environment. Second, we have also reduced the
dimension of the relevant temporal patterns we seek.
No longer are we finding multivariate patterns mea-
surements, but instead we seek univariate patterns in
either the time-sequence of best scores {TT,}, or the
time-sequence of difference in best scores {TT, -
TTg}, for some fault model.

In principle, we may use any univariate trend
detection scheme available, including TrenDx. We
illustrate a few straightforward methods, based on
thresholds and accumulation of differences over time.
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Thresholds

The simplest method of determining whether the
score for of {TT,} or {TT, - TTy} is significant is
establishing a threshold over which the matching
score triggers an alarm. A threshold for a high score
of {TT,}, denoted by TT,*, is best determined by
experience from training cases. Let TIn denote the
average value of {TT,} over time for a normal patient
case (contiguous data set). We presume TIn is nor-

mally distributed.? We recommend a two-stage super-
vised learning procedure. In the first stage, run a set
of normal cases through TrenDx matching to the nor-
mal trend template and compute unbiased estimates
of the mean and standard deviation of TTn. In the sec-
ond stage, run both normal and abnormal cases
through TrenDx using different levels of TT * for
sounding an alarm. Select a value of TT,* producing
satisfactory sensitivity and specificity. If the normal-
ity assumption was a close approximation, then
choosing TT,* as two estimated standard deviations
above the mean of TTn will yield a sensitivity of bet-
ter than 0.95.

A significant threshold for {TT, - TTg} may be
learned similarly: first estimate the distribution using

3. This presumption is based on intuition rather than a sta-
tistical result. Because {TT,} is non-negative, there may
be some skew. With sufficient cases one can test an empir-
ical distribution for normality [5, page 322].



faulty cases, then optimize sensitivity and specificity
from normal and faulty cases. One may also find a
threshold by relying on intuition, based on a TrenDx
score giving a mean percentage error in explaining
the data. {TT, - TT;} being above a threshold p
means that the normal trend template is p percent
more erroneous than the fault model. One may also
consider judging a faulty trend as significant using a
threshold for the percentage better match of the fault

IT -TT TT,
. n f_1__°f
model: TT, =1 T_T,, .
Accumulators

More reliable sensitivity and specificity may be
achieved by accumulating features of {TT,} or {TT,
- TTy) than by mere comparison of a single value to
a threshold. Various accumulators are used in stafis-
tical process control [6, chapter 5]. We re-label the
sequences of interest to include their time stamp t:
{TT,,} and {TT,; - TTg (}. Any of the accumulators
below may yield satisfactory performance:

e Runs: Alarm if R successive values are over a
threshold K.

¢ Duration: Alarm if all values within some time
range are over a threshold K.

o Cumulative sum (CUSUM): Alarm if the accu-
mulated sum of values over a threshold K
exceeds another threshold M.

o Exponentially weighted moving average
(EWMA): Alarm if a geometrically weighted sum
of W, exceeds a threshold K:

W, = 'LTTn,r' fi,t)+ (1-nW,_;;Wo=0;

rbetween 0 and 1.

Just as when using threshold tests for significant
trends, one should test any of these accumulation
techniques on training data to choose parameter esti-
mates yielding acceptable sensitivity and specificity.

TRIGGERING ALTERNATE
MONITOR SETS

Monitor sets represent the set of competing trends
in a diagnostic context. The significance of a fault
trend may be a sign that the diagnostic context has
changed. This in turn may warrant triggering of an
alternate monitor set.

The monitor set representation may be supple-
mented to include rules of the following form:
If fault trend template TTy; is significant, then
trigger monitor set M;. The temporal distance
between point P of TTy and the anchor point Q on
each trend template of M is the range [t t.].

The significance test may be determined via any of
the means in the previous section. TrenDx can apply

707

these rules to monitor trends in a changing diagnostic
context. Then each of the trend hypotheses in the new
context are temporally anchored to process the new
data within the appropriate intervals.

GENERATING ALARMS

Having information that a fault trend is significant at
time Ty, an automated monitor can send an alarm to
operators or clinicians caring for the process. The
alarm can state the name of the trend template and the
time T,,. Additional text may include descriptions of
important value constraints or intervals. The text for
these trend template components come fairly naturally
from the knowledge representation and from the quali-
tative temporal interval relations. For example, the text
for an alarm of a handbagging hemodynamic fault may
read:

Handbagging hemodynamic fault was detected at
12:27:21 a.m. A phase of decreasing blood pres-

sure proceeded a phase of increasing heart rate.

An alarm may also display some or all of the data in
the fault intervals for the best matching fault hypothe-
sis at time T,.

An automated monitor may wish to alarm based on a
boolean combination of significant trends. Forward
chaining of a set of production rules may follow any of
the significance methods of the previous section.

A more thorough method for deciding whether to
send an alarm at time T is evaluation of a decision
model weighing the costs and benefits of sending the
alarm versus not sending the alarm. The utility of
alarming is based on:
 estimated probabilities of the normal and abnormal

trends, and
» probabilities, costs, and benefits of each action a
clinician may take upon seeing the alarm.

The utility of not alarming is based on the trend
probabilities as well as

» probabilities, costs, and benefits of each action a
clinician may take upon not seeing the alarm.
Considered as a single decision to made at time T,
one can encode this decision model straightforwardly
as a decision tree. This decision is more accurately
made in the context of the time progression of the
patient, partially as reflected by the best matching
trend templates at each time. A critical review of
dynamic decision modeling techniques is in [7].

DATA VISUALIZATION

Operators in monitoring environments with multiple
channels of high frequency data may have extreme dif-
ficulty tracking all of this data for significant trends.
An intelligent trend detector such as TrenDx may be
used to intelligently filter this data to show the opera-
tor only that data corresponding to an important com-



ponent of a faulty process. This display can be driven
by rules of the following form:
If fault trend template TT is significant, then dis-
play data of parameter P; during the time specifica-
tion T; (for i from 1 to some integer k).

The significance test may be determined as previ-
ously discussed. Rules may be specific to the moni-
tored process and the operator observing the data.

Each time specification T; is a Boolean combination
of temporal intervals, and may be expressed in a tem-
poral query language such as the time-line language
of [8). Intervals of trend templates can be the time
intervals over which data should be displayed.

Rule:If hemodynamic fault significant,
then display BP during de creasing phase
and a minute bafore,
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Figure 5: Filtering a data stream using TrenDx results.

An example intelligent display appears in Figure 5.
The rule states that when the trend for a handbagging
hemodynamic fault is significant, the display should
show the blood pressures assigned to the decreasing
phase of the trend template and a minute before. The
optimal hypothesis for this fault trend is used for send-
ing some data to the display. Thus this high frequency
data stream has been filtered. This filtering technique is
part of a broader data visualization effort [9].

RELATED WORK

Our work is compatible with time series analysis and
signal processing [10]. When applied without context
these techniques may produce high false positive rates
and redundant alarms. These should lessen if such - meth-
ods are used within trend template value constraints,
which provide an appropriate temporal context.

Others have investigated monitoring using knowl-
edge-based temporal patterns. Keravnou and Wash-
brook [11] have built a temporal model for diagnosing
skeletal dysplasias. Their representation is more limited
than trend templates in that time points cannot be fully
flexible, and symptoms are limited to tokens for qualita-
tive states. Chemical engineers [12, 13] have used quali-
tative descriptions of temporal trends in terms of first
and second derivatives of single variables. Using rules
with temporal patterns in antecedents, they have had
promising results monitoring data streams similar to an
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ICU. These representations are limited in only han-
dling univariate trends over fixed time slices.
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